凯文·凯利:AI时代有三大趋势,全球主义、创新加速和AI驱动生成

来源:科创板日报发布时间:2024-09-05 15:43
人物
生成海报
凯文·凯利
《连线》杂志创始主编

“当人工智能深刻影响经济和文化,必将涌现三大趋势:全球主义、创新加速和AI驱动生成。”在今日的2024 Inclusion·外滩大会开幕式主论坛上,对于AI时代的趋势,著名未来学家、《连线》杂志创始主编、《5000天后的世界》作者凯文·凯利(Kevin Kelly)在演讲中做出上述判断。

凯文·凯利认为,全球主义正在迅速推进,因为我们正在共同构建一个基于技术的“超级有机体”。“我们正将全球的手机、笔记本电脑和所有的数据服务器连接成一个巨大的计算系统。每一台设备就像这个庞大计算机的一个神经元。这台超级计算机在一个前所未有的规模上高速运行。”

凯文·凯利指出,人工智能时代下的全球主义推进,也正在推动一种新兴的全球文化。他举例称,人们的生活方式和穿着也逐渐趋同:我们都住在钢筋混凝土的房子里,家里有空调、自来水和Wi-Fi。按照马斯洛的需求层次理论,人们的底层需求已经改变并达成一致。

此外,人工智能将实现真正的“实时翻译”,交流不再有延迟,打破了全球的语言障碍,再加上增强现实(VR)技术,这将极大地改变跨国工作和交流的方式,全球化“劳动力” 将第一次出现出现。

第二个趋势是创新的加速。凯文·凯利指出,AI技术加速了创新的步伐,这种加速体现在多个方面,包括新发明和新思想的传播速度越来越快、通过增强现实(AR)和虚拟现实(VR)技术来提高学习效率,甚至AI也通过机器及其他传感器来感知世界等。此外,ChatGPT等人工智能工具,也极大地加快了人们学习的速度。

“如今,我相信许多年轻人通过ChatGPT等人工智能工具学到的东西,已经超越了他们在学校所学,”凯文·凯利认为,当答案变得唾手可得时,真正有价值的反而是提出正确问题的能力,以及掌握正确思维方式的能力。

他说,如果你是年轻人,你在两年后的工作甚至还没有被创造出来。在两年内,你在学校里接受所针对目前工作市场的培训会发生变化。当你毕业之后,你将从事一些在你上学时还不存在的工作。“学会如何学习”将成为未来毕业生的核心技能。

最后,凯文·凯利谈到了AI驱动生成的趋势。他指出,人工智能不仅将帮助我们摆脱机械、枯燥的工作,完成我们无法独立完成的任务,甚至可以生成超乎人类想象的全新事物。

“这正是人工智能带来的真正巨大革命,”凯文·凯利说,人工智能系统正在生成新的事物——它们还不完美,但正在变得越来越好。他强调,人工智能是多样的,它不仅仅是一种,这些智能将填补许多可能的智能领域,我们也将创造出多种不同的人工智能。

他举例称,通过这一年半来使用 ChatGPT和其他大语言模型的经验来看,从人工智能工具中获益最多的人实际上是表现一般或较差的员工。人工智能工具不仅仅是为最聪明的人准备的,它们还能帮助不那么出色的人产生更好地完成工作。

回答中国网友提问:人类正在通过人工智能重塑文明

在2024外滩大会开幕之前,凯文·凯利通过外滩大会官方微信,向中国读者征集了关于AI的问题。5日,外滩大会官方公布了凯文·凯利的回答。

对于人工智能是不是人类的下一个进化阶段,凯文·凯利给出了肯定的答案,他认为,人工智能的重要性不亚于火、印刷术和工业革命,这将是广泛而巨大的变革。但至少需要一个世纪的时间来实现,不可能一蹴而就。

“人类正在通过人工智能重塑文明。”凯文·凯利说,也许一百万年来,我们一直是这个星球上唯一的智慧物种。但如今,我们正在创造人造“外星人”,就像他们来自遥远的星球,前来拜访我们一样。这些“外星人”的思想将被引入我们的世界,从而创造出一种新的文化。

对于如何确保人工智能带来的未来是有益的,而不是加剧不平等,凯文·凯利表示,我们有理由对任何新技术保持谨慎,人工智能也不例外。“我认为,未来最大的问题之一可能会源自人工智能。但我们今天所担心的许多问题,或许并不是最难解决的,那些问题是可以应对的。真正的挑战可能是我们还未曾想象到的未知问题。”

他认为,首先要利用技术去引导它的发展,要实现我们期望的由人工智能驱动的未来,最好的途径之一就是积极参与其中,而不是试图禁止它或将其排斥在外。其次,应尽可能推动人工智能技术的开源化。开源模式赋予更多人参与的机会,形成一种更具包容性的技术生态系统。

在回答“未来哪些工作不会被人工智能取代”时,凯文·凯利表示,正如当今就像几乎没有工作是不需要使用某种能源一样,未来几乎所有的工作都会使用某种程度的人工智能,但这并不意味着它们会被人工智能完全取代。

本文转自媒体报道或网络平台,系作者个人立场或观点。我方转载仅为分享,不代表我方赞成或认同。若来源标注错误或侵犯了您的合法权益,请及时联系客服,我们作为中立的平台服务者将及时更正、删除或依法处理。

评论
暂无用户评论
最新资讯
更多