自旋电子器件被认为是后摩尔时代存储和逻辑器件最有前景的解决方案之一。自旋电子学的核心是磁性比特的电流翻转。然而,经过二十年的科学探索,人们仍然无法定量甚至定性地理解面内电流翻转垂直磁矩的物理现象。例如,自旋器件的翻转电流大小及其对称性无法通过磁单畴旋转或磁畴壁解钉扎等现有理论模型解释,面内磁场通常导致无法理解的垂直磁矩翻转等。为此,中国科学院半导体研究所朱礼军研究员团队在Advanced Materials和Applied Physics Reviews发表综述文章,评述了自旋电子器件翻转领域的研究现状、发展趋势和关键科学问题(Adv. Mater. 2023, 35: 2300853;Appl. Phys. Rev. 2021, 8: 031308)。
为了解密面内电流翻转垂直磁矩的深层次物理机制,朱礼军团队围绕直接参与磁矩翻转的自旋轨道矩效应(Spin-orbit torque)和手性交换相互作用DMI效应(Dzyaloshinskii-Moriya interaction)开展了持续科研攻关。
首先,通过重金属合金方法巧妙调控界面电子结构,最早观测到了重金属/铁磁体系的界面DMI由界面自旋轨道耦合强度和界面轨道杂化共同决定的直接实验证据(Communications Physics 2022, 5: 151),并演示了轨道杂化不变时界面DMI效应随界面自旋轨道耦合强度的线性依赖关系(Advanced Functional Materials 2019, 29:1805822)。随后,朱礼军团队在组分均匀的磁性单层膜内部发现了全新的bulk DMI效应,为人们理解磁性体系的手性相互作用、拓扑磁学和电流翻转等物理现象提供了新的思路(Science China-Physics, Mechanics & Astronomy 2024, 67: 227511)。图1.(a)长程手性交换相互作用及其导致的(b)有效垂直DMI磁场、(c)翻转相图对称性破缺(W/FeCoB样品)和(d)电流翻转和垂直磁场翻转的对称性破缺(W/FeCoB样品)。
图2. 单个SOT器件中完整布尔逻辑运算集的实现。(a)器件示意图;(b)电流翻转的对称性破缺;(c,d)完整的布尔逻辑运算集。
本文转自媒体报道或网络平台,系作者个人立场或观点。我方转载仅为分享,不代表我方赞成或认同。若来源标注错误或侵犯了您的合法权益,请及时联系客服,我们作为中立的平台服务者将及时更正、删除或依法处理。