月之暗面 Kimi发布了“Muon 可扩展用于 LLM 训练”的新技术报告,并宣布推出“Moonlight”:一个在 Muon 上训练的 30 亿 / 160 亿参数混合专家模型(MoE)。使用了 5.7 万亿个 token,在更低的浮点运算次数(FLOPs)下实现了更好的性能,从而提升了帕累托效率边界。
月之暗面称,团队发现 Muon 优化器可通过添加权重衰减、仔细调整每个参数的更新幅度等技术进行扩展。这些技术使得 Muon 能够在大规模训练中开箱即用,无需进行超参数调优。扩展法则实验表明,与计算最优训练的 AdamW 相比,Muon 实现了约 2 倍的计算效率。
本次论文所使用的模型为 Moonlight-16B-A3B,总参数量为 15.29B,激活参数为 2.24B,其使用 Muon 优化器,在 5.7T Tokens 的训练数据下获得上述成绩。
月之暗面团队称,我们的模型不仅突破了当前的 Pareto 前沿,还在训练所需的 FLOP 数大幅减少的情况下,达到了比以往模型更优的性能。我们开源了一个分布式版本的 Muon 实现,它在内存使用和通信效率上都进行了优化。同时,我们也发布了预训练模型、经过指令调优的模型以及中间训练检查点,旨在为未来的研究提供支持。
本文转自媒体报道或网络平台,系作者个人立场或观点。我方转载仅为分享,不代表我方赞成或认同。若来源标注错误或侵犯了您的合法权益,请及时联系客服,我们作为中立的平台服务者将及时更正、删除或依法处理。